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1. INTRODUCTION

All known ª quantum logicsº Ð orthomodular lattices and posets, orthoal-

gebras, effect algebras, etc.Ð may be regarded as cancelative, unital partial
abelian semigroups. [See Wilce (1995a, b) for pertinent definitions.] An

abelian group may also be regarded as a cancelative, unital PASÐ one in

which every element is a unit. As noted in Wilce (1995b), every cancelative

unital PAS L has a canonical ideal A (L) which is an abelian group, and a

canonical quotient by A (L) which is an effect algebra. Thus, we may regard

every cancellative, unital PAS as an extension of an effect algebra by an
abelian group. The present paper begins a study of such extensions.

2. ABELIAN EXTENSIONS OF EFFECT ALGEBRAS

An effect algebra E is a cancelative PAS with a unique unit. An abelian

group A is a cancelative PAS in which every element is a unit. Their Cartesian

product, E 3 A, is a cancelative, unital PAS under ( p, x) % (q, y) : 5 ( p %
q, x 1 y) (defined if p ’ q) with units 1 1 x, x P A.

Definition. The abelian part of a cancelative, unital PAS L is the set

A (L) : 5 L ’ 5 {a P L | " b P La ’ b}.

A (L) is an abelian group. [Proof : " a P A (L), $ b P L with (1 % a) %
b 5 1, whence 1 % (a % b) 5 1. Thus a % b 5 0, so b P A (L), where it

functions as 2 a.] For all a, b P L, say a ’ b iff b 5 a % x for some x P
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A (L). It is not hard to show that ’ is a congruence on L. The following is

proved in (Wilce, 1995b):

Theorem 1. L+: 5 L / . is an effect algebra, and the quotient map p :

L ® L+ is a faithful homomorphism.

We thus have (in an obvious sense) a short exact sequence

0 ® A (L) ®
i

L ®
p

L 1 ® 0

In other words, L is an extension of the effect algebra L+ by the abelian group

A (L). We shall say that L splits iff the foregoing extension does, i.e., iff

L . A (L) 3 L+. The proof of the following is routine:

Lemma 1. The following are equivalent:

(a) L . L+ 3 A.
(b) $ s P Hom(L+, L) p ( s (p)) 5 p " p P L+.
(c) $ m P Hom(L, A) m (x) 5 x " x P A (L).

Corollary 1. If L+ is either a finite Boolean algebra or a finite chain,

then L splits.

Proof. Any partial section of p over the atoms of L+ extends to a

homomorphic section. n

3. COHOMOLOGY

We would like to be able to classify, up to isomorphism, the possible

extensions L of a given effect algebra E by a given abelian group A. This
can be done by means of cocycles, exactly as in the theory of extensions of

abelian groups. Let s :L+ ® L be any section of p with s (0) 5 0. If p,q P
L+ with p ’ q, let b ( p, q) be the unique x P A (L) with s (a) % s (b) %
x 5 s (a % b). Then b satisfies

(1) b (0, 0) 5 0

(2) b ( p, q) 5 b (q, p)

(3) b ( p, q) 1 b ( p % q, r) 5 b ( p, q % r) 1 b (q, r)
for all jointly orthogonal p, q, r in L+.

Definition. Let E be an effect algebra and A an abelian group. An A-

valued cocycle on E is a map b : ’ E ® A satisfying conditions (1)±(3).

All possible extensions of E by A are encoded by A-valued cocycles,

as follows: If b is an A-valued cocycle on an effect-algebra E, let E 3 b A
5 (E 3 A, % b ), where ( p, x) % b (q, y) : 5 ( p % q, x 1 y 1 b ( p, q)). Then

E 3 b A is a cancelative, unital PAS, A (E 3 b A) . A, and (E 3 b A) . E.
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Moreover, if E 5 L+ and A 5 A (L) for some cancelative, unital PAS L and

arises from a section s : E ® L, as discussed above, then L . E 3 b A via

the map a j ( p (a), s ( p (a))).
It remains to determine when two cocycles give rise to isomorphic

extensions. That they need not always do so is illustrated by the following

Example.3 The Diamond is the four-element effect algebra D 5 {0, a,
b, 1} where a 5 a8 and b 5 b8. Consider the Z2-valued cocycle b (a, a) 5
0, b (b, b) 5 1. (Note that this is a cocycle, vacuously.) The extension D 3 b

Z2 is not isomorphic to D 3 Z2. An easy way to see this is to note that, in
the former, the elements (1, 0) and (1, 1) each have two ª half-elementsº

[(a, 0) and (a, 1) and (b, 0), (b, 1), respectively] while in the latter, (1, 0)

has four half-elements and (1, 1) has none.

The set Z 2(E, A) of all A-valued cocycles on L is an abelian group under

pointwise addition, the zero element being the trivial cocycle b ( p, q) 5 0

corresponding to the trivial extension E 3 A. Any function g: E ® A with
g (0) 5 0 gives rise to a cocycle

- g ( p, q) : 5 g ( p) 1 g (q) 2 g ( p % q)

The set B 2(E, A) of such cocycles d g is a subgroup of Z 2(L, A). The second
cohomology group of E with coefficients in A is

Ext(L, A) : 5 Z 2(L, A)/B 2(L, A)

Exactly as in the context of abelian group extensions, one has:

Theorem 2. The cocycles b and b 8 in Z 2(E, A) determine isomorphic

extensions of E by A iff b 2 b 8 P B 2(E, A).

Thus, Ext(E, A) parametrizes the distinct isomorphism classes of exten-

sions of E by A. Just for fun, let us compute Ext(E, A) in some easy cases:

Example. Here is another view of the Diamond example above: Z 2(D,

Z2) . Z2 3 Z2 in an obvious way. If g: D ® Z2, then for x 5 a, b we have

- (x, x) 5 g (1) 2 (g (x) 1 g (x)) 5 g (1)

Hence Ext (D, Z2) . Z2.
In computing the extensions of an orthoalgebra by an abelian group, it

is often expedient to make use of an associated algebraic test space (Foulis

et al., 1992).

Example. Let E be the logic of the ª wright triangle,º i.e., the algebraic

test space

3 With thanks to Don Hadwin.
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{{a, x, b}, {b, y, c}, {c, z, a}}

(Thus, the points of the foregoing structure correspond to the atoms of E,
and the blocks to sets of atoms summing to 1.) The cocycles on E with values

in an abelian group A are determined by a free assignment of values in A to

pairs of orthogonal atoms, plus one free assignment to, say, the pair (a8, a).

One finds that Ext (E, A) 5 0 for any A.

Example. Let E be the logic of the algebraic test space

{{a, x, b}, {b, y, c}, {c, z, x}, {a, z, y}}

(sometimes called the flying wedge). Then EXT(E, Z2) is nontrivial (as can

be seen via a dimension count). Note that this test space does not have a

separating set of states.

4. ABELIAN HULLS

Foulis and Bennett (1995) have observed that any effect algebra is
associated with a universal abelian group. The same construction is available

more generally for partial abelian semigroups. By a measure on a PAS L,

we mean a homomorphism m : L ® K, where K is an abelian group.

Definition. Let L be a PAS, Z[L] the free abelian group generated by L,

and J the subgroup generated by elements of the form p 1 q 2 ( p % q),

where p ’ q in L. The abelian hull of L is the group G (L) : 5 Z[L]/J.
Note that there is a canonical measure n L: L ® G (L) given by n L(a) 5

[ x a] ([ ? ] the quotient map ZL ® G (L) and x a the Z-valued characteristic

function of {a}.) The following is straightforward (L, M arbitrary PASs):

Theorem 3. For any f P Hom(L, M ), $ !G ( f ) P Hom(G (L), G (M ))

with G ( f ) + n L 5 n M + f .

Remark. Theorem 3 sets up an isomorphism between Hom(G (L), K )

and the group M (L, K ) of K-valued measures on L. Taking K 5 C1, the
circle group, we have M (L, C1) . G (L), the Pointryagin dual of G (L). Thus,

for finite L, we have G (L) . M (L, C1).

Suppose now that A 5 A (L). Applying G to the exact sequence

0 ® A ®
i

L ®
p

L 1 ® 0

we obtain a sequence

0 ® A ®
G(i)

G(L) ®
G( p )

G (L 1 ) ® 0
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This may fail to be exact. Setting B : 5 ker (G ( p )), we have the following

commutative diagram, with short exact rows:

0 ® A ® L ® L 1 ® 0

x x x
0 ® B ® G(L) ® G (L 1 ) ® 0

Lemma 2. The following are equivalent:

(a) L+ hosts a separating set of measures.

(b) n +: L+ ® G (L+) and n | A: A ® G (L) are injective.
(c) n :L ® G (L) is injective.

(d) L hosts a separating set of measures.

Proof. Obviously (a) Þ (b) and (c) Þ (d) Þ (a). The link (b) Þ (c) is

supplied by the short five lemma (which is valid in this context). n

Theorem 4. Let L be a PAS such that n | A(L): A (L) ® G (L) is injective.

The following are equivalent:

(a) L . A (L) 3 L+.

(b) G (L) . A (L) 3 G (L+).
(c) G (L) . B 3 G (L+).

Proof. It is easily checked that G (A 3 L+) . A 3 G (L+). Thus, (a)

entails (b). Obviously, (b) entails (c) [since it entails that A (L) 5 B.] Now

suppose (c) holds, i.e., that G (L) splits as B 3 G (L+). Then we have a B-

valued measure m on L such that m (b) 5 b for each b P B. But then for

every a P A, we have m ( n (a)) 5 n (a), where n : L ® G (L) is the canonical
map. So long as n | A is injective, therefore, A ® L ® L+ also splits. n

Any extension of a torsion-free abelian group by an abelian group of

finite order is split (Rotman, 1995). Hence, by Theorem 4, we have:

Corollary 2. If L hosts a separating set of measures, G (L+) is torsion-

free, and A (L) has finite order, then L . A (L) 3 L+.

Note that if G (L+) is torsion-free, L+ contains no copy of D: If a, b P
L+ with a % a 5 b % b, then 2(a 2 b) 5 0 in G (L).

REFERENCES

Foulis, D. J., and Bennett, M. K. (1995). Foundations of Physics, 24, 1325±1346.

Foulis, D. J., Greechie, R. J., and RuÈ ttimann, R. (1992). International Journal of Theoretical

Physics, 31, 789±807.

Rotman, J. (1995). An Introduction to the Theory of Groups , Springer-Verlag, Berlin.

Wilce, A. (1995a). International Journal of Theoretical Physics, 34, 1807±1812.

Wilce, A. (1995b). Perspectivity and congruence in partial Abelian semi-groups, preprint;

Mathematica Slovaca , to appear.


