Abelian Extensions of Quantum Logics

David V. Feldman¹ and Alexander Wilce²

Received July 4, 1997

1. INTRODUCTION

All known "quantum logics"—orthomodular lattices and posets, orthoalgebras, effect algebras, etc.—may be regarded as cancelative, unital partial abelian semigroups. [See Wilce (1995a, b) for pertinent definitions.] An abelian group may also be regarded as a cancelative, unital PAS—one in which every element is a unit. As noted in Wilce (1995b), every cancelative unital PAS L has a canonical ideal $A(L)$ which is an abelian group, and a canonical quotient by $A(L)$ which is an effect algebra. Thus, we may regard every cancellative, unital PAS as an *extension* of an effect algebra by an abelian group. The present paper begins a study of such extensions.

2. ABELIAN EXTENSIONS OF EFFECT ALGEBRAS

An effect algebra *E* is a cancelative PAS with a unique unit. An abelian group *A* is a cancelative PAS in which *every* element is a unit. Their Cartesian product, $E \times A$, is a cancelative, unital PAS under $(p, x) \oplus (q, y) := (p \oplus$ *q,* $x + y$ (defined if $p \perp q$) with units $1 + x, x \in A$.

Definition. The *abelian part* of a cancelative, unital PAS *L* is the set $A(L) := L^{\perp} = \{a \in L | \forall b \in La \perp b\}.$

A(*L*) is an abelian group. [*Proof*: $\forall a \in A(L)$, $\exists b \in L$ with $(1 \oplus a) \oplus a$ $b = 1$, whence $1 \oplus (a \oplus b) = 1$. Thus $a \oplus b = 0$, so $b \in A(L)$, where it functions as $-a$.] For all *a,* $b \in L$, say $a \approx b$ iff $b = a \oplus x$ for some $x \in L$

¹ Department of Mathematics, University of New Hampshire, Durham, New Hampshire 03824; e-mail: dvf@christa.unh.edu.

² Department of Mathematics, University of Pittsburgh/Johnstown, Johnstown, Pennsylvania 15904; e-mail: wilce $+$ @pitt.edu.

A(*L*). It is not hard to show that \approx is a congruence on *L*. The following is proved in (Wilce, 1995b):

Theorem 1. L_{+} : = L/\approx is an effect algebra, and the quotient map π : $L \rightarrow L_{+}$ is a faithful homomorphism.

We thus have (in an obvious sense) a short exact sequence

$$
0 \to A(L) \stackrel{i}{\to} L \stackrel{\pi}{\to} L_+ \to 0
$$

In other words, *L* is an *extension* of the effect algebra *L*⁺ by the abelian group *A* (*L*). We shall say that *L splits* iff the foregoing extension does, i.e., iff $L \approx A(L) \times L_{+}$. The proof of the following is routine:

Lemma 1. The following are equivalent: (a) $L \simeq L_{+} \times A$. (b) $\exists \sigma \in \text{Hom}(L_+, L) \; \pi(\sigma(p)) = p \; \forall p \in L_+.$ (c) $\exists \mu \in \text{Hom}(L, A)$ $\mu(x) = x \forall x \in A(L)$.

Corollary 1. If *L*⁺ is either a finite Boolean algebra or a finite chain, then *L* splits.

Proof. Any partial section of π over the atoms of L_{+} extends to a homomorphic section.

3. COHOMOLOGY

We would like to be able to classify, up to isomorphism, the possible extensions *L* of a given effect algebra *E* by a given abelian group *A.* This can be done by means of cocycles, exactly as in the theory of extensions of abelian groups. Let $\sigma: L_+ \to L$ be *any* section of π with $\sigma(0) = 0$. If $p, q \in$ *L*₊ with $p \perp q$, let $\beta(p, q)$ be the unique $x \in A(L)$ with $\sigma(q) \oplus \sigma(b) \oplus$ $x = \sigma(a \oplus b)$. Then β satisfies

(1) $\beta(0, 0) = 0$ (2) $\beta(p, q) = \beta(q, p)$

(3) $\beta(p, q) + \beta(p \oplus q, r) = \beta(p, q \oplus r) + \beta(q, r)$

for all jointly orthogonal *p, q, r* in *L*+.

Definition. Let *E* be an effect algebra and *A* an abelian group. An *A* valued *cocycle* on *E* is a map $\beta: L_E \to A$ satisfying conditions (1)–(3).

All possible extensions of *E* by *A* are encoded by *A*-valued cocycles, as follows: If β is an *A*-valued cocycle on an effect-algebra *E*, let $E \times_B A$ $= (E \times A, \bigoplus_{\beta})$, where $(p, x) \bigoplus_{\beta} (q, y) := (p \bigoplus q, x + y + \beta(p, q))$. Then $E \times_{\beta} A$ is a cancelative, unital PAS, $A(E \times_{\beta} A) \simeq A$, and $(E \times_{\beta} A) \simeq E$.

Abelian Extensions of Quantum Logics 41

Moreover, if $E = L_{+}$ and $A = A(L)$ for some cancelative, unital PAS *L* and arises from a section $\sigma: E \to L$, as discussed above, then $L \simeq E \times_B A$ via the map $a \mapsto (\pi(a), \sigma(\pi(a))).$

It remains to determine when two cocycles give rise to isomorphic extensions. That they need not *always* do so is illustrated by the following

*Example.*³ The *Diamond* is the four-element effect algebra $D = \{0, a, \}$ *b*, 1} where $a = a'$ and $b = b'$. Consider the Z₂-valued cocycle $\beta(a, a) =$ 0, $\beta(b, b) = 1$. (Note that this *is* a cocycle, vacuously.) The extension $D \times_B$ \mathbb{Z}_2 is not isomorphic to $D \times \mathbb{Z}_2$. An easy way to see this is to note that, in the former, the elements $(1, 0)$ and $(1, 1)$ each have two "half-elements" $[(a, 0)$ and $(a, 1)$ and $(b, 0)$, $(b, 1)$, respectively] while in the latter, $(1, 0)$ has four half-elements and (1, 1) has none.

The set $Z^2(E, A)$ of all A-valued cocycles on L is an abelian group under pointwise addition, the zero element being the trivial cocycle β (*p*, *q*) = 0 corresponding to the trivial extension $E \times A$. Any function *g:* $E \rightarrow A$ with $g(0) = 0$ gives rise to a cocycle

$$
\partial g(p, q) := g(p) + g(q) - g(p \oplus q)
$$

The set $B^2(E, A)$ of such cocycles δg is a subgroup of $Z^2(L, A)$. The *second cohomology group* of *E* with coefficients in *A* is

$$
Ext(L, A) := Z^2(L, A)/B^2(L, A)
$$

Exactly as in the context of abelian group extensions, one has:

Theorem 2. The cocycles β and β' in $Z^2(E, A)$ determine isomorphic extensions of *E* by *A* iff $\beta - \beta' \in B^2(E, A)$.

Thus, Ext(*E, A*) parametrizes the distinct isomorphism classes of extensions of E by A . Just for fun, let us compute $Ext(E, A)$ in some easy cases:

Example. Here is another view of the Diamond example above: $Z^2(D)$, \mathbb{Z}_2 \cong $\mathbb{Z}_2 \times \mathbb{Z}_2$ in an obvious way. If *g: D* \rightarrow *Z*₂, then for $x = a$, *b* we have

$$
\partial(x, x) = g(1) - (g(x) + g(x)) = g(1)
$$

Hence Ext $(D, \mathbb{Z}_2) \simeq \mathbb{Z}_2$.

In computing the extensions of an orthoalgebra by an abelian group, it is often expedient to make use of an associated *algebraic test space* (Foulis *et al.*, 1992).

Example. Let E be the logic of the "wright triangle," i.e., the algebraic test space

³ With thanks to Don Hadwin.

$$
\{\{a, x, b\}, \{b, y, c\}, \{c, z, a\}\}\
$$

(Thus, the points of the foregoing structure correspond to the atoms of *E*, and the blocks to sets of atoms summing to 1.) The cocycles on *E* with values in an abelian group *A* are determined by a free assignment of values in *A* to pairs of orthogonal atoms, plus one free assignment to, say, the pair (a', a) . One finds that Ext $(E, A) = 0$ for any *A*.

Example. Let *E* be the logic of the algebraic test space

$$
\{\{a, x, b\}, \{b, y, c\}, \{c, z, x\}, \{a, z, y\}\}\
$$

(sometimes called the *flying wedge*). Then $EXT(E, \mathbb{Z}_2)$ is nontrivial (as can be seen via a dimension count). Note that this test space does not have a separating set of states.

4. ABELIAN HULLS

Foulis and Bennett (1995) have observed that any effect algebra is associated with a *universal abelian group.* The same construction is available more generally for partial abelian semigroups. By a *measure* on a PAS *L*, we mean a homomorphism $\mu: L \to K$, where *K* is an abelian group.

Definition. Let *L* be a PAS, $Z^{[L]}$ the free abelian group generated by *L*, and *J* the subgroup generated by elements of the form $p + q - (p \oplus q)$, where $p \perp q$ in *L*. The *abelian hull* of *L* is the group $G(L) := \mathbb{Z}^{\lfloor L \rfloor} / J$.

Note that there is a canonical measure $v_l: L \rightarrow G(L)$ given by $v_l(a) =$ $[\chi_a]$ ([·] the quotient map $\mathbb{Z}^L \to G(L)$ and χ_a the Z-valued characteristic function of {a}.) The following is straightforward (*L, M* arbitrary PASs):

Theorem 3. For any $\phi \in \text{Hom}(L, M)$, $\exists ! G(\phi) \in \text{Hom}(G(L), G(M))$ with $G(\phi) \circ v_L = v_M \circ \phi$.

Remark. Theorem 3 sets up an isomorphism between $Hom(G(L), K)$ and the group $M(L, K)$ of K-valued measures on L. Taking $K = C¹$, the circle group, we have $M(L, C^1) \simeq G(L)$, the Pointryagin dual of $G(L)$. Thus, for finite *L*, we have $G(L) \simeq M(L, \mathbb{C}^1)$.

Suppose now that $A = A(L)$. Applying G to the exact sequence

$$
0 \to A \xrightarrow{i} L \xrightarrow{\pi} L_{+} \to 0
$$

we obtain a sequence

$$
0 \to A \stackrel{G(i)}{\to} G(L) \stackrel{G(\pi)}{\to} G(L_+) \to 0
$$

This may fail to be exact. Setting $B := \text{ker } (G(\pi))$, we have the following commutative diagram, with short exact rows:

$$
0 \to A \to L \to L_{+} \to 0
$$

$$
\downarrow \qquad \downarrow \qquad \downarrow
$$

$$
0 \to B \to G(L) \to G(L_{+}) \to 0
$$

Lemma 2. The following are equivalent:

(a) *L*⁺ hosts a separating set of measures.

(b) v_+ : $L_+ \rightarrow G(L_+)$ and $v|_A$: $A \rightarrow G(L)$ are injective.

(c) $v: L \to G(L)$ is injective.

(d) *L* hosts a separating set of measures.

Proof. Obviously (a) \Rightarrow (b) and (c) \Rightarrow (d) \Rightarrow (a). The link (b) \Rightarrow (c) is supplied by the short five lemma (which is valid in this context).

Theorem 4. Let *L* be a PAS such that $v|_{A(L)}: A(L) \rightarrow G(L)$ is injective. The following are equivalent:

- (a) $L \simeq A(L) \times L_{+}$.
- (b) $G(L) \simeq A(L) \times G(L_{+})$.
- (c) $G(L) \simeq B \times G(L_{+})$.

Proof. It is easily checked that $G(A \times L) \simeq A \times G(L)$. Thus, (a) entails (b). Obviously, (b) entails (c) [since it entails that $A(L) = B$.] Now suppose (c) holds, i.e., that $G(L)$ splits as $B \times G(L_{+})$. Then we have a *B*valued measure μ on *L* such that $\mu(b) = b$ for each $b \in B$. But then for every $a \in A$, we have $\mu(v(a)) = v(a)$, where v: $L \rightarrow G(L)$ is the canonical map. So long as $v|_A$ is injective, therefore, $A \rightarrow L \rightarrow L$ also splits.

Any extension of a torsion-free abelian group by an abelian group of finite order is split (Rotman, 1995). Hence, by Theorem 4, we have:

Corollary 2. If *L* hosts a separating set of measures, $G(L₊)$ is torsionfree, and $A(L)$ has finite order, then $L \simeq A(L) \times L_{+}$.

Note that if $G(L_{+})$ is torsion-free, L_{+} contains no copy of *D*: If $a, b \in$ *L*+ with $a \oplus a = b \oplus b$, then $2(a - b) = 0$ in $G(L)$.

REFERENCES

Foulis, D. J., and Bennett, M. K. (1995). *Foundations of Physics*, 24, 1325-1346.

- Foulis, D. J., Greechie, R. J., and Rüttimann, R. (1992). *International Journal of Theoretical Physics*, 31, 789-807.
- Rotman, J. (1995). *An Introduction to the Theory of Groups*, Springer-Verlag, Berlin.

Wilce, A. (1995a). *International Journal of Theoretical Physics*, 34, 1807-1812.

Wilce, A. (1995b). Perspectivity and congruence in partial Abelian semi-groups, preprint; *Mathematica Slovaca*, to appear.