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1. INTRODUCTION

All known “quantum logics”—orthomodular lattices and posets, orthoal-
gebras, effect algebras, etc.—may be regarded as cancelative, unital partial
abelian semigroups. [See Wilce (1995a, b) for pertinent definitions.] An
abelian group may also be regarded as a cancelative, unital PAS—one in
which every element is a unit. As noted in Wilce (1995b), every cancelative
unital PAS L has a canonical ideal A(L) which is an abelian group, and a
canonical quotient by A (L) which is an effect algebra. Thus, we may regard
every cancellative, unital PAS as an extension of an effect algebra by an
abelian group. The present paper begins a study of such extensions.

2. ABELIAN EXTENSIONS OF EFFECT ALGEBRAS

An effect algebra E is a cancelative PAS with a unique unit. An abelian
group A is a cancelative PAS in which every element is a unit. Their Cartesian
product, E X A4, is a cancelative, unital PAS under (p, x) b (¢, y) := (p B
¢, x + ) (defined if p L ¢) with units 1 + x, x € 4.

Definition. The abelian part of a cancelative, unital PAS L is the set
A(L) := Lt = {a € LIVb € La 1 b}.

A(L) is an abelian group. [Proof: Ya € A(L), 3b € L with (1 B a) P
b=1,whence 1 & (a Bb) =1 Thusa bbb =0,s0b € A(L), where it
functions as —a.] For alla, b € L, say a = b iff b = a &b x for some x €
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A(L). It is not hard to show that ~ is a congruence on L The following is
proved in (Wilce, 1995b):

Theorem 1. Liy: = L/~ is an effect algebra, and the quotient map 7t:
L — L. is a faithful homomorphism.
We thus have (in an obvious sense) a short exact sequence

0> AL) SLS5Ly -0

In other words, L is an extension of the effect algebra L. by the abelian group
A (L). We shall say that L splits iff the foregoing extension does, i.e., iff
L =~ A(L) X L+ The proof of the following is routine:

Lemma 1. The following are equivalent:

(a) L=~ L. X 4.

(b) 3o € Hom(L+, L) (c(p)) = p Vp € L..
(¢) 3u € Hom(L, 4) u(x) = x Vx € A(L).

Corollary 1. If L is either a finite Boolean algebra or a finite chain,
then L splits.

Proof. Any partial section of 7 over the atoms of L. extends to a
homomorphic section. m

3. COHOMOLOGY

We would like to be able to classify, up to isomorphism, the possible
extensions L of a given effect algebra E by a given abelian group A. This
can be done by means of cocycles, exactly as in the theory of extensions of
abelian groups. Let 6:L+ — L be any section of  with 6(0) = 0. If p,q €
Ly with p L ¢, let B(p, q) be the unique x € A(L) with o(a) & o(b) b
x = o(a & b). Then P satisfies

(1) B(0,0) =0
() B(p, 9) = B(g, p)

() B(p. @) + Blp Fq. 1 =Pp.qFr) + P(g 1)
for all jointly orthogonal p, ¢, r in L.

Definition. Let E be an effect algebra and A an abelian group. An A4-
valued cocycle on E is a map P:Lr — A4 satisfying conditions (1)—(3).

All possible extensions of E by A4 are encoded by A-valued cocycles,
as follows: If 3 is an A4-valued cocycle on an effect-algebra E, let E Xp A4
= (E X 4, $p), where (p, x) Bp (¢, ») := (p P ¢, x +y + B(p, @)). Then
E Xp A is a cancelative, unital PAS, A(E Xp A) =~ 4, and (E Xp A) = E
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Moreover, if E = L+ and 4 = A(L) for some cancelative, unital PAS L and
arises from a section o: E — L, as discussed above, then L =~ E X A via
the map a — (7t(a), o(1t(a))).

It remains to determine when two cocycles give rise to isomorphic
extensions. That they need not a/ways do so is illustrated by the following

Example.® The Diamond is the four-element effect algebra D = {0, q,
b, 1} where a = a' and b = b’. Consider the Z>-valued cocycle B(a, a) =
0, B(b, b) = 1. (Note that this is a cocycle, vacuously.) The extension D Xg
Z> is not isomorphic to D X Z,. An easy way to see this is to note that, in
the former, the elements (1, 0) and (1, 1) each have two “half-elements”
[(a, 0) and (a, 1) and (b, 0), (b, 1), respectively] while in the latter, (1, 0)
has four half-elements and (1, 1) has none.

The set Z*(E, A) of all A-valued cocycles on L is an abelian group under
pointwise addition, the zero element being the trivial cocycle B(p, ¢) = 0
corresponding to the trivial extension £ X 4. Any function g: £ — A4 with
g(0) = 0 gives rise to a cocycle

og(p,q):=g(p) +g(q) —g(p Py

The set B*(E, A) of such cocycles 8g is a subgroup of Z*(L, A). The second
cohomology group of E with coefficients in 4 is

Ext(L, A) := Z*(L, A)/B*(L, A)
Exactly as in the context of abelian group extensions, one has:

Theorem 2. The cocycles B and B’ in Z*(E, A) determine isomorphic
extensions of E by A iff B — B’ € BX(E, A).

Thus, Ext(E, A) parametrizes the distinct isomorphism classes of exten-
sions of E by A. Just for fun, let us compute Ext(E, A) in some easy cases:

Example. Here is another view of the Diamond example above: Z*(D,
Z,) = Z, X Z, in an obvious way. If g: D — Z,, then for x = a, b we have

ax, x) = g(1) — (g(x) + g(x) = g(1)

Hence Ext (D, Z») = Z,.

In computing the extensions of an orthoalgebra by an abelian group, it
is often expedient to make use of an associated algebraic test space (Foulis
etal., 1992).

Example. Let E be the logic of the “wright triangle,” i.e., the algebraic
test space

* With thanks to Don Hadwin.
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Ha, x, b}, ib, y, ¢}, {c, z, aj}

(Thus, the points of the foregoing structure correspond to the atoms of E,
and the blocks to sets of atoms summing to 1.) The cocycles on E with values
in an abelian group A are determined by a free assignment of values in 4 to
pairs of orthogonal atoms, plus one free assignment to, say, the pair (a', @).
One finds that Ext (E, 4) = 0 for any 4.

Example. Let E be the logic of the algebraic test space

Ha, x, b}, b, y, ¢}, {c, z, x}, {a, 2, y}}

(sometimes called the flying wedge). Then EXT(E, Z,) is nontrivial (as can
be seen via a dimension count). Note that this test space does not have a
separating set of states.

4. ABELIAN HULLS

Foulis and Bennett (1995) have observed that any effect algebra is
associated with a universal abelian group. The same construction is available
more generally for partial abelian semigroups. By a measure on a PAS L,
we mean a homomorphism p: L — K, where K is an abelian group.

Definition. Let Lbe a PAS, Z!" the free abelian group generated by L,
and J the subgroup generated by elements of the form p + g — (p & ¢),
where p L ¢ in L The abelian hull of L is the group G (L) := Z"/J.

Note that there is a canonical measure v;: L — G (L) given by vi(a) =
[%a] ([-] the quotient map Z* — G (L) and Y, the Z-valued characteristic
function of {a}.) The following is straightforward (L, M arbitrary PASs):

Theorem 3. For any ¢ € Hom(L, M), 3'G(¢p) € Hom(G (L), G(M))
with G((I)) VL = Vu (I)

Remark. Theorem 3 sets up an isomorphism between Hom(G (L), K)
and the group M (L, K) of K-valued measures on L Taking K = C', the
circle group, we have M (L, C') =~ G (L), the Pointryagin dual of G (L). Thus,
for finite L, we have G (L) =~ M (L, C).

Suppose now that 4 = A(L). Applying G to the exact sequence

05 ASLS5 L. >0

we obtain a sequence

G(i) G(m)
0>4—>GL) > G(L+) >0
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This may fail to be exact. Setting B := ker (G (7)), we have the following
commutative diagram, with short exact rows:

0>4—> L - Ly —>0

2 2 2
0>B—>GL) > G(Ly)—>0

Lemma 2. The following are equivalent:

(a) L+ hosts a separating set of measures.

(b) V&1 Ly — G(L+) and vl 4 — G (L) are injective.
(c) vi:L — G (L) is injective.

(d) L hosts a separating set of measures.

Proof. Obviously (a) = (b) and (¢) = (d) = (a). The link (b) = (c) is
supplied by the short five lemma (which is valid in this context). m

Theorem 4. Let L be a PAS such that vl A(L) — G (L) is injective.
The following are equivalent:

(a) L~ A(L) X Ls.

(b) G(L) = A(L) X G(L+).

(¢) G(L) = B X G(Ly).

Proof. Tt is easily checked that G(A4 X L) = A X G(L+). Thus, (a)
entails (b). Obviously, (b) entails (c) [since it entails that A(L) = B.] Now
suppose (c) holds, i.e., that G (L) splits as B X G (L+). Then we have a B-
valued measure i on L such that pu(b) = b for each b € B. But then for
every a € A, we have w(v(a)) = V(a), where v: L — G (L) is the canonical
map. So long as vl is injective, therefore, 4 — L — L. also splits. m

Any extension of a torsion-free abelian group by an abelian group of
finite order is split (Rotman, 1995). Hence, by Theorem 4, we have:

Corollary 2. If L hosts a separating set of measures, G (L) is torsion-
free, and A4 (L) has finite order, then L =~ A(L) X L.

Note that if G (L+) is torsion-free, L. contains no copy of D: If ¢, b €
L. witha & a = b & b, then 2(a — b) = 0 in G(L).
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